A Computational Methodology for Large-eddy Simulation of Tip-clearance Flows
نویسندگان
چکیده
A large-eddy simulation (LES) solver which combines an immersed-boundary technique with a curvilinear structured grid has been developed to study the temporal and spatial dynamics of an incompressible rotor tip-clearance flow. The overall objective of these simulations is to determine the underlying mechanisms for low-pressure fluctuations downstream of the rotor near the endwall. Salient features of the numerical methodology, including the mesh topology, the immersed boundary method, the treatment of numerical instability for non-dissipative schemes on highly skewed meshes, and the parallelization of the code for shared memory platforms are discussed. The computational approach is shown to be capable of capturing the evolution of the highly complicated flowfield characterized by the interaction of distinct blade-associated vortical structures with the turbulent endwall boundary layer. Simulation results are compared with experiments and qualitative as well as quantitative agreement is observed.
منابع مشابه
Effects of Different Turbulence Models in Simulation of Unsteady Tip Leakage Flow in Axial Compressor Rotor Blades Row
Characteristics of rotor blade tip clearance flow in axial compressors can significantly affect their performance and stable operation. It may also increase blade vibrations and cause detrimental noises. Therefore, this paper is contributed to investigate tip leakage flow in a low speed isolated axial compressor rotor blades row. Simulations are carried out on near-stall condition, which is val...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کامل